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This paper is concerned with optimal solutions to the forest management 
problem when future utilities are undiscounted. By examining asymptotic properties 
of such solutions, we lind that (i) if the utility function is linear, then the 
Faustmann periodic solution is optimal; (ii) if the utility function is increasing and 
strictly concave. an optimal solution converges to the maximum sustained yield 
solution. which we characterize as a golden rule. These results may be viewed as a 
possible resolution to the debate in forestry economics about what constitutes an 
optimal policy in forest management. Jourrrul of’ Econonfic Literature Classification 
Numbers: 111, 721. 1 IYXb Academic Pres*. Inc 

1. INTRODUCTION 

Consider an economy with an empty tract of land, which can be used for 
growing trees of a particular type. The age of a tree (a) determines the tim- 
ber content of the tree (j’(u)), through a given function,,f: The utility of the 
economy in any time period is determined by the timber content of trees 
harvested in that period. If the economy has a discount rate of p 3 0, and 
wishes to “maximize” the undiscounted or discounted sum of utilities, what 
pattern of planting and harvesting trees should it follow? 

Assuming that one were interested in maximizing the discounted or 
undiscounted sum of the timber content of trees harvested (or, what is the 
same thing, assuming that the utility function is linear), Faustmann [4] 
suggested the following “periodic solution” to the problem posed above. 
The whole land should be planted with seedlings initially, and all seedlings 
should be allowed to grow to a certain age (M), at which time the whole 
forest should be cut down and replanted with seedlings. This process 
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should be repeated indefinitely. Furthermore, the trees should be cut at the 
age (M) at which the increase in the timber content of the standing trees 
over an additional unit time period equals the sum of the following two 
factors: (i) the interest that can be earned if the timber content from cutting 
the trees is invested at an interest rate of p; (ii) the interest that can be ear- 
ned on the “site value” (that is, on the present value of the stream of all 
future harvests on the particular site) of the land released by cutting the 
trees. Contributions to capital theory by economists like Jevons [S] and 
Wicksell [20] suggests a solution to the tree-cutting problem which 
ignored the aspect of the “site-value.” 

Even though Faustmann suggested a periodic solution to the problem of 
optimal exploitation of forests, “there has been a tradition in forestry 
management which claims that the goal of good policy is to have sustained 
forest yield, or even maximum sustained yield somehow defined” 
(Samuelson [ 16, p. 1461). (The Faustmann model has been discussed 
extensively by economists like Gaffney [S], Pearse [ 131, and Scott [IS]. 
More through studies on the economics of forestry are contained in 
Schreuder [ 171, Gregory [ 181, and Wan [ 191. A very readable updated 
account can be found in Dasgupta [3].) 

In this paper we consider optimal solutions to the problem posed in the 
first paragraph, when future utilities are undiscounted. By examining the 
asymptotic properties of such solutions, we find that (i) if the utility 
function is linear, then the Faustmann periodic solution is indeed optimal; 
(ii) if the utility function is increasing and strictly concave, an optimal 
solution converges to the “maximum sustained yield” solution, which we 
characterize as a “golden rule.” Thus our paper provides a resolution of the 
debate in forestry economics about what constitutes an optimal policy in 
forest management. (It should be pointed out that we are not analyzing, in 
this paper. the case in which future utilities are positively discounted 
(p > 0). For a brief discussion of this case, see Sect. 7.) 

The plan of the paper is the following: After setting up the model in Sec- 
tion 2, we look at “stationary forests” in Section 3, and characterize a 
golden rule as a stationary forest with maximum per period utility 
(equivalently, maximum per period yield). This corresponds to the notion 
of “maximum sustained yield” used in the forestry literature. We prove the 
existence of a stationary shadow price, which “supports” the golden-rule 
program in the sense that at this price, the sum of utility plus the value of 
timber stands carried over, less the value of initial timber stands is 
maximized at the golden-rule activity among all feasible activities. Our 
analysis shows that the golden-rule forest is one in which the total plot of 
land is split up into M equal sub-plots, with one sub-plot each containing 
trees of age u (a = O,..., M - 1). In each period, trees of age M are cut down, 
and the sub-plot so cleared is planted with seedlings (age zero trees). It is 
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of interest to note that the age at which trees are cut at the golden rule (M) 
is the same as the age at which trees are cut on the above-mentioned 
periodic Faustmann solution. 

Since future utilities are undiscounted in our framework, we provide in 
Section 4 a proof of the existence of an optimal program, following the 
approaches of Gale [6], McKenzie [ 111, and Brock [l] in the theory of 
optimal intertemporal resource allocation. 

In Section 5, we consider the case of a linear utility function, and show 
(i) if the plot of land is initially empty, then the above-mentioned 
Faustmann periodic solution is optimal; (ii) if the plot of land has initially 
a standing forest then the following rule is optimal: initially, cut all trees of 
age M or more; thereafter, cut a tree if and only if it is of age M. Note that 
this means that if we think of the land as divided into sub-plots, according 
to the age of trees standing on them, then each sub-plot follows the 
periodic Faustmann solution. 

In Section 6, we consider the case of a strictly concave utility function, 
and show that the forest along an optimal program from “any initial 
forest” asymptotically approaches the golden-rule stationary forest. This 
result can be shown by following the general technique developed by 
McKenzie [ 1 I] in analyzing asymptotic convergence of optimal paths, 
using the concept of the “von Neumann Facet.” We provide a direct proof 
for our special case in order to keep the exposition self-contained. The 
results of Sections 5 and 6 are related to the existing literature on optimal 
intertemporal allocation, particularly to the results and methods of Brock 
[I], Gale [6], and McKenzie [ 111. 

2. THE MODEL 

2a. Production 

Consider a framework in which the timber content of a tree is related to 
the age of the tree, through a production function, ,f; from R + to R. Given 
the age of a tree (a)? the timber content of the tree is given by ,f‘(a), for 
a 20. 

The following assumptions on fare used in the paper: 
(A.1 j f(a)=O,for O<a,<a,,for some a> 1. 

(A.2) f is continuousfbr a > a, and there is a positive integer N > a, such 
that (i ) .f is increasing for a d a < N; (ii ) f is decreasing jbr a > N. 

2b. Some Notation 

In specifying our notation, N will refer to the positive integer of Sec- 
tion 2a. Let d denote the first unit vector, and e the (N + 1 )th unit vector of 
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RN+ ‘; i.e., d= ( 1, 0 ,..., O), e = (0, 0 ,..., 1) in RN+ ‘. Let p be the sum vector 
in RN (i.e., ,U = (1, l,..., 1) in RN); v be the sum vector in RN+ ‘. Let IN 
denote the Nx N identity matrix. Define a (Ns 1) x (N + 1) matrix 

A= 

Define a Nx (Ns 1) matrix B by 

B= [0 IN]. 

Define a set D as follows: D = [x in RN,+ ‘; vx = 1, es = 01. Define a set E 
as follows: E= [(Ju,~) in D x RN,+ ‘; I’= Ax]. Note that for (s, >I) in E, _ 
vy = 1, and dy = 0. Finally, define a set F as follows: F= [(s, z) in D x D: 
B(Ax--2) >O]. Note that if (9, r) is in F, then pB(A.y-z) = cl,-. 

2c. Programs 

A ,feasible program from x in D, is a sequence (.‘c,, J‘, + , ) satisfying 

S(, = x, (.K,,Y,+, 1~5 B(y,+, --‘;,+,)30 for 130. (2.1) 

Associated with a feasible program (x,, J’,+ , ) from x in D, is a sequence 

CC r+l ) such that 

(‘, + I = NY,. , -My, + 1) for r>O. (2.2 

By the properties of sets E and F noted in Section 2b, we have 

I’ 1’ - 1 -r+1- , &,+ , = 0, PC,+1 =Ll-y,+I for r>O. (2.3 

A feasible program (x,, y,+ , IS stationar), if X, = x,, , for t > 0. In this 

and the stationary value of c) 
case, we denote the stationary levels of X, and J, + , respectively by x and J-, 

,+, by c; that is, c=B(J>-.u)=B(A.u-x). 
The feasible program itself is then denoted by (x, .I’). 

We now provide some interpretation of the above definition for a feasible 
program. For a feasible program (x,, .I’, + , ), let .Y,= [X,(O) ,..., s,(N)]; then 
x,(a), for a = 0, l,..., N, is the land occupied by input of trees of age a, at the 
end of time period t. The total amount of land available for forestry in the 
economy is assumed to be one unit, so VS, = 1. Also, for any reasonable 
objective function for the economy, trees will never be allowed to grow 
beyond age N; we therefore take this as a condition of feasibility itself. That 
is, without loss of generality, feasible programs can be restricted to those 
satisfying x,(N) = 0, or equivalently, ex, = 0. Thus, X, belongs to the set D 
for each t. 

Let I-,+, = [,r,+,(O) ,..., y,+,(N)]; then y,+,(a), for a=O, l,..., N, is the 
land occupied by output of trees of age a, at the end of time period (r + 1). 
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Since in one period a tree of age (a) becomes a tree of age (a + I), so 
~,+l(l)=x,(0);...;y,+,(N)=x,(N- 1). Furthermore, v,+,(O) is, by 
definition, equal to zero, that is, dy,, , = 0. Thus, we have y,+ , = AX,, and 
(x,, y,, , ) is in the set E. Note that as a consequence we have VJ, + , = I, 
which simply reflects the fact tht the total amount of land available for 
forestry is one unit. 

At the end of time period (t + 1 ), two things are supposed to happen 
instantaneously, by the nature of our “point-input, point-output” 
framework. First, trees of different ages are cut down. Second, new 
seedlings (trees of age zero) are planted in the cleared areas. Let 
x,+ , = C-K,+ ,(O), . . . . s,+ ,(N)]; then -Y, + , (a), for a=O, l,..., N, is the land 
occupied by input of trees of age a, at the end of time period (t + 1). 
Then, clearly, J, + , ( 1) > X, + ,( I ) ,..., J, ,~ ,(N) 3 X, + !(N). This means that 
m+,-.~,+,)Bo. 

Let c,,, = [c,+,(l) ,..., c,+,(N)]; then c,+,(a), for a= l,..., N, is the land 
released by Izurvest of trees of age u, at the end of time period (t + 1). Note 
then that c ,+ ,(a) is precisely measured by (J‘,+ ,(a) -x, + ,(a)) for 
u = l,..., N. Thus we have (I,+, = B(y,+ , - .v , + , ). Since input of trees of age 
zero at the end of time period (t + I ) occupy the land released by all har- 
vests, x,+,(O)=c,+,(l)+ ... +c,+,(N); that is, ,~c,+,=(1.y,+,. 

We have now explained (2. I ), (2.2) and (2.3) as the. economy moves 
from the end of time period t to the end of time period (t.+ ,l ). The above 
process is then repeated indefinitely. 

2d. Prejkrences 

Preferences are represented by a utility function, II, from R, to R. The 
following assumptions on u are used in the paper: 

(A.31 li is strictly itweusirzg 

(A.41 II is continuous on R + and d~ff~rentiuhle on R + + 

(A.51 u is cormwe. 

Define Q = [,f( 1 ),...,,f(N)]. A feasible program (~7, ~37,~ ) from x in D 
is called optirtzul if 

hm inf 1 [u( Qc,) - u( Qc:)] < 0 (2.4) 

for every feasible program (s,, ~3, + , ) for x in D. (Here, we are adopting a 
somewhat different terminology than that used in the traditional theory of 
optimal intertemporal allocation. What we call “optimal” is labeled as 
“weakly maximal” by Brock [ 11. Gale [6] calls a program (x:, y,*, , ) 
“optimal” if (2.4) holds with “lim inf” replaced by “lim sup.“) 
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We turn now to an interpretation of this definition. For a feasible 
program (x,, y,, , ) from x in D, c,(a) for a = l,..., N is the land released 
by harvest of trees of age a, at the end of time period c. Assuming that the 
trees on a plot of land are proportional to the amount of land (the factor of 
proportionality being unity by suitable choice of units in which the number 
of trees are measured), the timber content obtained by harvest at the end of 
time period t is given by [f( 1) c,( 1) + . .. +f(N) c,(N)], or, equivalently, 
by Qc,. The function U, then, measures the utility obtained from this timber 
content at the end of time period t, I((@,). Implicitly, costs of planting and 
harvesting trees are being assumed to be zero, so that these costs do not 
enter as arguments in the utility function. If the utilities obtained in suc- 
cessive periods are not discounted (in the interests of integenerational 
equity, following Ramsey [IS]) and the sum of such utilities is to be 
“maximized,” in the sense of the well-known overtaking criterion, one can 
define an optimal program (.Y:. J>,*, , ) to be one which cannot be “over- 
taken” by a fixed positive amount by any other feasible program from the 
same initial condition; that is, by (2.4). 

The theory of optimal forest management as we will present it here will 
be an application of the results and methods of the general theory of 
optimal intertemporal allocation as developed by Gale [6], McKenzie 
[ll 1, and Brock [ 11. To conveniently relate the forestry theory to inter- 
temporal allocation theory, the following notation will be useful. 

Define a we&zre,finction, II‘: F -+ R, by n,(s, Z) = u(QB(A.y - z)) for (.Y, r) 
in F. (This is the utility achieved if this period’s input is .Y and the next 
period’s input is Z, where I is “technologically” feasible from .Y in one 
period.) Note, then, that a,femihle progrmn from x in D can be redefined as 
a sequence (.u,, J’,+, ) with s0 = x, J’,+ , = As,, and (s,, s,+ ,) in F for 
t > 0. Similarly, an optimal progrum from x in D can be redefined as a 
feasible program ( .Y,*, J-F+ I ) from x such that 

liTm_i/nf i [~js,, .Y,+ ,) - H,(.Y:, XI*, , )] 6 0 
i = 0 

for every feasible program (x,, -v, + , ) from x. Keeping this notation in 
mind, we will, at various points in the next four sections, provide 
appropriate remarks which will show how forestry theory and intertem- 
poral allocation theory are related. 

3. STATIONARY FORESTS AND A GOLDEN RULE 

In this section, we are concerned with the following question: “Suppose 
the forest on the given piece of land does not change at all from one period 
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to the next, what is the ‘best’ composition of the forest?” In our ter- 
minology, if we look at stationary programs (x, J)), which stationary 
program has the maximum per period utility u( Qc) = u( QB(y - x))? 

We define a golden rule to be a triple (.Y*, y*, c*) with (.u*, y*) in E, and 
c* = B(J’* - .Y*) 3 0, such that if (x y) is in E and c = B( J - X) 3 0, then 

We are interested in characterizing a golden rule. 
To this end, assume (A. I), (A.2) and consider the function, h 

(representing the average product function) as follows: 

h(u) = C.f(~)lal for a>O; Iz(O)=O. 

Consider now the following problem: 

Maximize h(n) 

(3.1) 
Subject to a E [ I, 2 ,..., N]. 

Clearly, there is an integer, M, such that (i) 1 < M < N, (ii) /7(M) 3 h(u) for 
a E [ l,..., N]. Note that M > 1, since /I( 1 ) = 0, while /z(N) > 0. 

Given any solution M to problem (3.1) we can define .i- = (.<(O),..., -t(N)) 
by the following: .<(a) = (I/M) for a =O, l,..., M- 1; Z(a) =0 for 
a = M ,..., N. Defining ?: = A-t, and ? = B( ?: - .i-), we note that (.<, f) is in E, 
and I3 0. Furthermore, Q? = /7(M). 

Now, consider any (.Y, ?; c), such that (x, y) is in E, and r = B(J) -x) 2 0. 
Then, c = B(Ax - x) = (x(O) -x( 1 ) ,..., .u(N- 1 ) -X(N)), and Qc= 
~,~=,.f(u) (.Y(u- 1)-s(u)). Since c30, so .~(a- l)-s(LI)>O for u= 
l,..., N; also .f’(u) 6 ah(M) for N = l,..., N. Thus, Qc < h(M) x:=, u(.u(u - 1 ) 
-.u(u))=h(M)~<~~, .~(a- 1)=/z(M). 

We have, therefore, demonstrated that (.<, $. ?) is a golden rule, for any 
increasing utility function, u. Thus, a golden-rule forest is one in which the 
total plot of land is divided into M equal sub-plots (M being a solution to 
problem (3.1)), with one sub-plot each containing input of trees of age a 
(a = 0, l,..., M - 1). In each period, trees of age M are cut down, and the 
sub-plot so cleared is planted with seedlings (age zero trees). 

In order to study the properties of optimal forests as we do in the next 
three sections it becomes crucial to establish a “price-support property” for 
a golden rule. This means that one associates with the golden rule a 
shadow price vector such that the utility plus the value of various timber 
stands carried over, less the value of initial timber stands is maximized at 
the golden rule among all feasible activities. 

The approach taken in the general theory of optimal intertemporal 
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allocation by Gale [6], Brock [ 11, and McKenzie [ 1 I] is to use the 
Kuhn-Tucker theorem to provide this price-support property. We have 
chosen to provide a purely constructive proof, which has the advantage 
that we can identify the shadow prices in terms of the basic data (the 
production function, J and the utility function, u) of our model. 

Given a solution, M, to problem (3.11, we denote h(M) by j?; u’(j) by or; 
,8( l,.... N) by P; p(O, 1, . . . . N) by q; aq by p. 

LEMMA 3.1. Under (A.1 )-(AS), I” (x, z) is in F, then 

u[QB(Ax-z)] +pz-px<u[/rJ. (3.2) 

Pmqf: If (x,z) is in F, then B(As-=)=(-r(O)-=(I) ,...,. u(N- l)- 
:(N)) 2 0. Now, for a = l,..., N, we have 

Q(u) =,/(a) = ah(a) < ah(M) = up. (3.3) 

so, Q d /I( I,..., N) = P. Using this information, we have 

QB(Ax - 2) < PB(Ax - z) = q(Ax -z) = qAx - q-‘. (3.4) 

Now, qA -q = fi( 1, 2 ,..., N, 0) - p(O, I,..., N) = ,8( 1, l,..., 1, -N). Thus, 
qAx - qx = ~(,Y(O) + . + x( N - 1)) - aNx(N) = PV.Y = 1). Using this infor- 
mation in (3.4), we have 

QB(Ax-z)-fl<q.~-qz. 

Multiplying through by x in (3.5), we get 

z[QB(Ax-,)-/I],<px-pr. 

(3.5) 

(3.6) 

By concavity and differentiability of u, we have 

u[QB(As-z)]<u(/I)+cc[QB(Ax-,)-81. (3.7) 

Combining (3.6) and (3.7), we get (3.2). m 

If there are several solutions to problem (3.1) then there will be several 
golden rules. We proceed now with the assumption that there is unique 
solution to problem (3.1): 

(A.6) If” M and M’ solve problem (3.1), then M = M’. 

Under this additional assumption there is a unique golden rule. 

THEOREM 3.1, Under (A.1 k(A.6), there is a unique golden rule. 



FOREST MANAGEMENT PROBLEM 237 

Proof Let M be the unique solution to (3.1). Then defining 
a(a)= (l/M) for a=O, l,..., M- 1; .?(a)=0 for a=M ,..., N; .$=A.?, and 
i: = B( j - .i-), we observe that (a, j, (:) is a golden rule, as demonstrated 
above. 

To prove the uniqueness of the golden rule, suppose (x, ~9, c) is a golden 
rule. We will show that (x, J’, c) = (-2, I;, ?). Note the c = B(A2c - X) 3 0, so 
(x(u- 1) - x(a)) 3 0 for a = l,..., N. Also, u(QB(A.u - x)) = u(b), so 
QB(Ax - X) = /I. Thus, we have C,“= ,f(u)[x(u - 1 )-X(U)] = /?. But, since 
f(u) d ah(a) d up, for u = l,..., N, so we have C,“= ,f(u)[.u(u - 1) -X(U)] d 
p x‘;=, u[.u(u - 1) -x(u)] = p C,“=, .~(a - I ) = fi. Thus,C,N= ,.f(u)[.u(u - 1) 
-x(u)]=C,~=, fiu[x(u- 1)-~(u)]: or c:=, (Ba-.f’(a))C-~(- I)- 
X(U)] =O. Now, since flu >,f(u), and .u(u- 1) 3.-u(u) for a = l,..., N, so 
[flu-f(u)][s(u- l)-.$a)] =0 for u= l,..., N. We know that @>f(u) 
for a = l,..., M- 1, M $ l,..., N; so we must have .~(a - 1) =X(U) for 
a=1 ‘...) M - 1 , M + 1 )..., N. This means that c(u) = 0 for u = l,..., M - 1, 
M+ I,..., N. Since QB(A.u - .u) = fi so c(M) = (l/M). This means that 
.u(u)=.u(M)+(l/M) for u=O, l,..., M- 1; .~(u)=.u(M) for u=M ,..., N. 
Since V.Y = 1, so .u( M) = 0, and X(U) = (l/M) for u = 0, l,..., M- 1; X(U) = 0 
for a = M,..., N. Thus .u=.f; J’=A.Y=A.<=$ ~=B(?,-s)=B(?:-.~)=~. 

I 

The price, p, which “supports” the golden rule in Lemma 3.1 is by no 
means unique. In fact, we now note an alternative price-support property, 
using an additional assumption: 

(A.7) h(u) is non-increusing,for M < a < N. 

We note that (A.1 ), (A.2), and (A.7) made on the production function of 
trees, ,f; are consistent with empirical studies (See Clark [2] for details). 

This alternative price-support property is used in Theorem 5.2 below to 
show the optimality of a certain program when the utitlity function is 
linear. The role of (A.7) in this context is to ensure that trees do not grow 
“too fast” in some years for a> M (more precisely, to ensure that 
f’(u + 1) -,f(u) d [ f(M)/M] for u = M,..., N - 1). Given (A.7), note that for 
LI = M,..., N - 1 C.P(u + 1 )/(a + 1 )] < [f’(u)/u], so that [uf(u + l)] d 
C(u + 1 If(a)1 = d(u) +.f(a). Consequently, 4./“(a + 1) -f(a)1 <f(a), and 
[.f(a + 1) -f(a)1 G.f’(a)/a. Since [f(u)/ul d [f(M)/MI, so [.f(u + 1) - 
f‘(u)] < [,f(M)/M] for a= A4 ,..., N- 1. 

Define P’ = CA 2LL.9 (M- 1 ) B, .f(W,...,.f(N)l; q’ = CO, B, 2/L.., 
(M- 1)8>.1‘(ML..,f(N)l; p’=q’. 

COROLLARY 3.1. Utlder (A.1 )-(A.7), $ (s, z) is in F, then 

u[QB(A.~--r)] +p’----p’-K~U[fll~ (3.8 1 
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ProofY If (x, Z) is in F, then &Ax - :) = (x(0) - 2( 1 ),..., 
x(N- l)-z(N))30. Now, for a = I,..., M, Q(a)=f(a)=ah(a),< 
ah(M)=a/?. Also, for a= M+ l,..., N, Q(a)=f(a). So Q<p’, and 

QB(Ax -z) d P’B(Ax - :) = q’(Ax - z) = q’Ax - q’z. (3.9) 

Now, q’A -4’ = CL, P,f(M+ 1) - .f’(M) ,...,. f(N) - f(N- l), -f(N)] 
6 [B ,... , P, p ,..., /I, -f(N)], sincef(a + 1) -.f(a) < p for a = A4 ,..., N- 1, by 
(A.7). Thus, q’h- q’x < fi[x(O) + ... + x(N- 1 )] -,f(N) x(N) = flv.u = fl. 
Using this in (3.9) 

QB( As - z ) - p < q’s - 4’:. (3.10) 

Multiplying through by CY in (3.10) we get 

u[QB(As-=)-/I] <p’.~-p’z. 

By concavity and differentiability of ~1, we have 

u[QB(Ax - z)] 6 u(p) + cx[Q!B(As - z) - /I]. 

Combining (3.11) and (3.12) we get (3.8). u 

(3.11) 

(3.12) 

4. THE EXISTENCE OF AN OPTIMAL PROGRAM 

In this section, we indicate how the existence of an optimal program can 
be established. This is done for the sake of completeness of the exposition 
of forestry theory in the undiscounted case; the methods are familiar from 
the general theory of optimal intertemporal allocation as developed by 
Gale [6], and modified by McKenzie [ 111 and Brock Cl]. Our exposition 
will follow the method used by Brock, and we will spell out the details of 
the steps only when the differences of the forestry model from his warrants 
it. 

Define v: F + R by a(.~, Z) = w’( X, r) - ,t*(L, .<) for (.u, Z) in F. Also, for 
(x, Z) in F, denote 6(x, 3) =p.~ -p: - V(X, z). By Lemma 3.1, 6(.x, 3) 3 0 for 
(x, :) in F. For a feasible program (xI, JJ,+ , ) from x in D, we denote 
&-x,, -xl + I ) by 6,, [(xl+ ... +-u,)/f] by Y,, [(I,, + ... +1),)/r] by 7,. A 
feasible program (x,, y, + , ) is called goon if there is a real number 8, such 
that for all T> 1, 

c v(x,,.K,+,)>e. (4.1) 
,=I 

To apply the techniques of Brock, the main result to establish is that 
there is a good program from x in D. 
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LEMMA 4.1. Under (A. 1 )-(A.5 ), there is a good program ,fiom x in D. 

Proof: Consider the sequence (x,) defined by: x0 = x, x1 = rl, 

s, = ((l/M) )..., (l/M), (A4 - t + 1 )/M, 0 )...) 0) for t = 2,..., M; 
I! I ) ,,mes 

x, = 1 for t > M. Define 13, + , = As, for t >, 0. Then, it is easy to check that 

<.r,, ?‘r+ I ) is a feasible program from x. Also since x, = 1 for all but a 
finite number of periods, so (.u,, J’, + , ) is a good program from x. 1 

Using Lemma 3.1, and following the method of Gale [6], one can show 

LEMMA 4.2. Under (A. I )-( A.5), if‘ a jtiasihl~~ program (x,, .I‘, + , ) is not 
good, then C,‘_ , r(x,, x, + , 1 + - cc as T + ,x. 

Using the fact that u is concave, and that the golden rule is unique 
(Theorem 3.1), one can show that good programs satisfy the “average 
turnpike property.” 

LEMMA 4.3. Under (A.l)-(A.6), if’ (I,,)‘,+, ) is u good program ,fiom x 
in D, then (S,, 7, ) + (.i-, .f ) us t + cc’. 

Proqf: Let (.V, J) be any limit point of the sequence (.F,, J,). Then, 
clearly, S is in D. Also, since ~9, + , = As,, we have y, + , = A(.Y, + + 
.u,)/(t + 1) = A(s, +“‘+ r,+,)/(t+l) - /4(x,, - x,+,)/(1 + 1) = 
A.f, + 1 - [A(.x,, - S, + , )/( t + 1 )]. SO, 7 = As, and (S, T) is in E. Finally, 
note that since B( J*, - s,) > 0. B( J, - -7,) 2 0, and B(J - .\-) 2 0; we denote 
?=B( F-s). 

Sin&e (Y I ,. f, _ ‘, + , > is good and II is concave, there is a real number 0 such 
that for f 2 1 (denoting z{(k) - I{(/?) by lJ(h-) for k in R, ), 

U(Q?,) 3 (l/f) c li(Qc,) 3 o/t. (4.2) 
,=-I 

Hence, U( QF) b 0. But by Lemma 3.1. U( QF) d 0, so we have U( QF) = 0. 
But then (.U, .F, F) is a golden rule, and by Theorem 3.1, (-7, J, 7) = (.t, $, ?). 
Since (.U,j) is an arbitrary limit point of the sequence (.U,, F,), so 
(.?,,j,)+(.<,$)as f-m. 1 

Defineo=inf(Ct==,b,: (.Y,,F,+,). f ‘bl p 1s a easl e rogram from x in D). By 
Lemma 4.1, we know that B < m. Using the method of Lemma 5 in Brock 
[ 11, one obtains the following result: 

LEMMA 4.4. Under (A.1 )-( AS), there is a good program (x:, ~‘1~ , ) 
sfrotn x in D, such that C:= ,, S: = 0. 
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Using Lemma 4.3 and the method of Theorem 1 of Brock [ 11, one then 
obtains the existence of an optimal program. 

THEOREM 4.1. Under (A. 1 )-( A.6), the ,feasible program (.u:, y; + , ) from 
x in D, given by Lemma 4.4, is an optimal program .from x. 

A consequence of Theorem 4.1 and Lemma 4.4 is that the golden-rule 
program is an optimal program from .G. 

COROLLARY 4.1. Under (A.l)-(A.6), the ,feasible program (s,, y,+ , ) 
from .t giver2 by s, = 2, y, + , = $ ,for t 3 0 is an optimal program, from 1. 

5. LINEAR UTILITY FUNCTION AND THE FAUSTMANN SOLUTION 

In this section, and the next, we will be concerned with the asymptotic 
properties of optimal programs. For this section, we will assume 

(A.8) u is linear; that is, u(k) = m k .ftir k in R, , \lhere m > 0. 

First, we will consider the case in which the land available for forestry is 
initially empty. In this case, without loss of generality, we can assume that 
x = d. We will show that, in this case, it is optimal to implement the follow- 
ing “periodic” policy. Let all trees grow up to age M, cut all of them down, 
and replant the entire forest with seedlings (age zero trees); repeat this 
process indefinitely. This, of course, is the solution concept proposed by 
Faustmann [4]. 

Next, we consider the case in which the land has, initially, a standing 
forest. In this case, the following obvious modification of the above policy 
is optimal: initially, cut all trees of age M or higher; thereafter, cut a tree if 
and only if it is of age M. 

Consider the sequence (1,, J, + , ) given by 

.fo = d, 3,=A’d for t= l,..., M- 1; .Y,=?, m&f for t>M. 

?’ ,+ , = A-7, for t30. (5.1) 

It can be easily checked that (.?,, ?;, + , ) is a feasible program from x = d. 

THEOREM 5.1. Under (A.l), (A.21, (A.8), the ufeasihle program 
C-F,, J,, I ) defined by (5.1 ) is an optimal program f>om x = d. 

Proof For any feasible program (.Y~, J’, + , ) from x = d, we have 
(.u,- , , x,) in F for t 2 1. So by using Lemma 3.1, we have 

Qc, + qx, - qx, , d 0 for t3 1. (5.2) 
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(5.3) 

(5.4) 

Using (5.2), we have for T> 1, 

i (Qc,-D)< -f (q.~,.-,-q.~,)=qr~-q.~~60, 
I= I r=I 

since qxO = qd= 0. For T= sA4, where s = 1, 2 ,... 

f: cei,d=( i QC) -(sM~)=sf(M)-sM~=O. 
!=I ,= I 

Thus, using (5.3) and (5.4) we have for T= sM, 

i (Qc,-QF,)<o. (5.5) 
/=I 

But (5.5) clearly implies that 

linm+inf f (Qc, - Q?,) < 0. (5.6) 
, I:1 

which proves that (.V,, J,, , ) is an optimal program from x = (I. 1 

We now consider the case in which x is an arbitrary vector in D. Let g be 
the Mth unit-vector in R”. Define an (N+ 1) x (N+ 1 ) matrix C as 

c= g 1 
[ 1 I ,v 0’ 

Consider the sequence (x;, J,; + , ) given by 

s;=x, .u;(a)=x(a- 1) for II = l,..., M - I 

x;(a)=0 for u3M, x;(o)= % x(a-I). 
<I = nr 

.u;= [CA]‘$ for t = 2,..., M + 1 

.I,; = x; h, for r>A4+2; J’,+~=A.Y: for t30 

(5.7) 

It can be checked that (s:, ~1; + I ) is a feasible program from x. We will 
show that (xi, y:+ I ) is an optimal program from x. 

THEOREM 5.2. Under (A.1 ), (A.2) (A.6)-(A.8) fhe ,feasihle program 

(43 I>:+ I ) defined by (5.7) is an optitml progratn ,frorn x E D. 
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Proqf: Note, first, that (x:, JS:+ , ) is a good program. To see this, note 
that for t3 1, 

upJc; + (J +p’s; + , -p’.$ = u[/?]. (5.8) 

Hence, C:=, ( u[Qc;+ ,] - u[/?]) =/f-u, -p’xr+, b -p’.uT+, 3 -f’(N) N, 
which shows that (XT, J,;+ , ) is good. 

Now, suppose ( .I-;, .r; + , > is not optimal. Then, there is some feasible 
program C-y,, I-,+, >, a real number 1.’ > 0, and an integer T* 3 1, such that 
for T3 T*, 

,$, izr[Qc,] - u[Qc:] ) 3 r’ for T> T*. (5.9) 

This means that (.I-,, ~9, + , > is itself good. Next, we note that 

u(Qc;,+p’x;-p’x=rn~[x(O)+ ‘.. +x(M-2)] 
and 

u(Qc,)+p’s, -p’xdn$[x(O)+ ... +x(1%-2)] 

Also, for t > 1, by Corollary 3.1, 

dQc,+, 1s~‘.y,+, -p’.~,6u(B). 

Using (5.8))(5.11), we have for T 3 T*, 

(5.10) 

(5.11) 

r’< i ;u[Qc,] - u[Qc;] ] <p’.r;.-p’x,. 
1-l 

(5.12) 

Hence. there is T** 3 T* such that 

p’.U> -p’.Y’7.> f/2 for T3 T**. (5.13) 

By Lemma 4.3, using the fact that (.Y(, J*,+ , ) and (si. J:+, ) are good 
programs, we know that .U, --f .f and .U, ’ + 1 as t -+ ‘x. But this contradicts 
(5.13) for large enough T. Hence (-vi, JT~ + , ) is an optimal program 
from x. m 

Remark. In order to clarify the descriptions of the optimal program 
(given by (5.1) and (5.7) ), we present a simple example. Suppose M= 3, 
N = 4. Let x = (1, 0, 0, 0,O). In this case, an optimal program is given by: 
2, = (0, 1, 0, 0, O), 1, = (0, 0, 1, 0, O), I, = x; 1, = .f, 3 for t > 3. This is 
what (5.1) describes. On the other hand, suppose x = (f, t, i, 0,O). Then, 
an optimal program is given by x’, = (f, 3, $, 0, 0), .I$ = (i, f, f, 0, 0), s; = x. 

I I X, = X, ~ 3 for t > 3. This is what (5.7) describes. 
One can relate the results of this section to the theory of the “von 
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Neumann facet” as developed by McKenzie [ 111. Let d(p) = { (x, 2) in F: 
I~‘(s, Z) + pz - px = w(& a)]. Equivalently, in terms of the notation 
introduced in Section 4, 4(p) = {(x, 2) in F: u(.Y, Z) +p: -px=O) or 
4(p) = {(x, Z) in F: 6(.x, Z) = O}. Following McKenzie, one can call 6(x, 2) 
the “value loss” suffered by operating at the “technology” pair (x, Z) (com- 
pared to the golden-rule point (-2, -2)) when valuation is at the price, p. 
(Note that 6(x, 2) 3 0 for all (x, Z) in F.) We can then call 4(p) the “facet” 
of the “technology” set, F, which suffers zero value loss (compared to the 
golden-rule point (.f, .i-)), when valuation is at the price, p. (Given another 
price vector, for example, p’, at which \v(.Y, :) + p’.~ - p’.u 6 \~(.t, -i-) for all 
(.Y, 3) in F, one can analogously define a facet &p’), which suffers zero 
value loss compared to the golden-rule point when valuation is at the 
price, p’.) 

The program described by (5.1) is one which starts from virgin land and 
follows a policy in which a tree is cut if and only if it is of age M. Con- 
sequently, it suffers zero value-loss for every time period. Any other 
program has non-negative value-losses in each period. This, together with 
the fact that the program described by (5.1) periodically returns to a 
“virgin-land” state, and hence a zero state valuation, while any other 
program has non-negative state valuation at each date, means that the 
given program is optimal according to our criterion. 

The idea of the proof of Theorem 5.2 is similar. One tries to construct a 
program which suffers zero value loss in all periods. However, since x is 
now an arbitrary point in D, there might be no z with the property that 
(x, r) is in d(p); that is, one might inherit a “badly-managed” forest. The 
best one can hope for, then, is to construct a program which suffers zero 
value-loss in all periods qfter t/w irzitiol period. A natural “candidate” 
program is one in which all trees of age greater than or equal to M are cut 
down initially. Thereafter, a tree is cut if and only if it is of age M. This is 
described in (5.7). Notice that along the program all trees of age greater 
than or equal to M should be cut down in the intitial period. How do we 
know that such an initial action is optimal? The answer is that, in general, 
we do not know for sure that this is optimal; if trees of age greater than M 
can grow “quite fast” for some periods, it is not obvious why, hatling 

irdwritrtl tkrm, one sould cut them down immediately. This explains our 
need for (A.7), which ensures that trees beyond age M do not grow “too 
fast.” Given this, it is possible to construct another price vector, p’ 
(Corollary 3.1) at which the constructed program suffers zero value-loss for 
all periods t 3 I. and at which the program suffers minimul (although 
possibly positive) value loss in the initial period compared to any other 
program sturting ,frorn the Lsunze initial ,forest. 

There is another aspect in which the proof of Theorem 5.2 differs from 
that of Theorem 5.1. The candidate program need not periodically return 
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to a state with zero input valuation. Thus, one has to be careful about the 
asymptotic levels of input valuation on the candidate program relative to 
an alternative comparison program. Here, we use the “average turnpike 
property” of good programs, which was used earlier to prove the existence 
of an optimal program in Section 4. Since this requires a unique golden- 
rule program, and (A.6) ensures that this is the case, our use of (A.6) in 
Theorem 5.2 (though not in Theorem 5.1) is understandable. 

6. STRICTLY CONCAVE UTILITY FUNCTION AND 
THE ASYMPTOTIC TURNPIKE SOLUTION 

For this section, we strengthen assumption (A.5) to 

(A.91 24 is strictly, concavr. 

Under this additional assumption, we will show that any optimal 
program from x in D must converge to the golden rule. Thus, the golden 
rule serves as the turnpike, and any optimal program obeys asymptotically 
the turnpike solution. Sections 5 and 6 show that there is a significant 
qualitative difference in the asymptotic behavior of optimal programs 
depending on the concavity assumption that is made on the utilty function. 

The ideas leading to this result can be explained simply and related to 
the existing literature. It is clear from the proof of Lemma 3.1 (particularly 
step (3.7)) that with a strictly concave utility function, the only processes 
which avoid va!ue-loss (that is, are on the facet, b(p)) are those which har- 
vest trees at age M in the quantity h(M). This is the content of Lemma 6.1. 

This leads to the so-called “value-loss result,” which we state as 
Lemma 6.2. It says that if the harvest is uniformly at least a certain positive 
“distance” away from the golden-rule harvest, then the value-loss is 
uniformly at least a certain positive number. On the other hand a good 
program, and hence an optimal program, can only suffer a sequence of 
value-losses (6,) such that the sum of such losses is finite. This means that 
value-losses converge to zero over time, and by the value-loss result, 
optimal harvests converge to the golden-rule harvest (Lemma 6.3). This 
part of the story corresponds to McKenzie’s [ 1 I] analysis of the con- 
vergence of optimal paths ro the von Neumann facet. 

The next step is to show that a feasible program lying on the facet, 4(p), 
will converge in terms of the input levels to the golden rule input level. 
That is. a feasible program (x,, ~1, + , ) satisfying (by Lemma 6.1 ) 

B(Ax, - x, + , ) = t for t>O 

must have x, + i as t + ixj. This result can be shown by following the 
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general technique of McKenzie [ 111, using the theory of matrix pencils. 
(See Sect. III of his paper dealing with “Convergence on the von Neumann 
Facet,” particularly Theorem 2, and also Lemma 8 in his Section V.) We 
provide in Lemma 6.4 a direct proof for our special case; this is done to 
keep the exposition self-contained. The asymptotic convergence result for 
optimal programs is then summarized in Theorem 6.1. 

Recall that the Mth unit vector in RN is denoted by g, and note that 
(g/M)=L 

LEMMA 6.1. Under (A.l)-(A.4), (A.6) (A.9), lf (x,:) is in F and 
6(x, z) = 0, rhen 

B(A.K-I)=;. (6.1) 

Proc$ Using the method of proof of Lemma 3.1. if 6(s, :) ==O, then (i) 
Q&As- :) = qAs- q:. Using (A.9), we note that if 6(.u, Z) =O, then (ii) 
QB(As - Z) = /.I. Using the method of proof of Theorem 3.1, (i) can be 
satisfied only if 

s(u- l)=-(a) for N = I ,.... M - 1, M + l,..., N. (6.2 1 

Given (6.2) (ii) can be satisfied only if 

.K(M- I)-.K(M)=(l/M). 

Combining (6.2) and (6.3) we get (6.1). 1 

For (K, K’) in R’- x R’., we define a distance function 

(6.3) 

J(K, K’)= i IK,-K;l. 
,--I 

We now establish a “value loss” result of the type proved by Radner [ 14) 
and McKenzie [ 10, 111. 

LEMMA 6.2. Under (A.1 )-(A.4) (A.6), (A.9) given 7 > 0, there is fi > 0, 
SW/~ that (f (x, z) is in F, and J(B(A.Y - z), f) 2 11, [hen 6(x, z) 2 6. 

Pro?j!f: Suppose, on the contrary, there is a sequence (.K”, z‘) in F, such 
that J(B(A.x’ -:‘), E) 3 ‘/, but a(.~‘, z‘) + 0 as s + rlj. Since (.Y’, 2”) is in a 
compact set, there is a subsequence (s”, z”‘) converging to (.v*, z*), where 
(.K*, z* ) is in F. Since J(B(A.y“ --r”), ?) > ‘/, J( B(A.\-* - ;*), ?) > y. This 
means that 6(-u*, Z* ) > 0, by Lemma 6.1. Since (s”, z”) converges to 
(.v*, r*), 6(x”, r”) + S(.v*, r*). But since a(.~“, z”‘) -+ 0 as s’ + ;x, 
6(r*, z*) = 0, a contradiction. This proves the lemma. 1 
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LEMMA 6.3. Under (A.t)-(A.4) (A.6) (A.9). if (.Y~,Y,+,) is a goo~l 
program ,for x in D, then 

-1 

c &,<a, (6.4) 
I=0 

6,-+0 as t-+x, (6.5) 

J(c,, (:) +O as t + xl. (6.6) 

Proqf: We have for T 3 1, 

f  u(Qc,)= f  (p-u,+, -px,)- i 6, ] =px --p-u,- &, ,. 
!= I  ,= I ,= I /=I 

Since (x,, ~3, + , ) is a good program, there is a real number fI such that for 
T3 1, we have 

Since 6, > 0 for t > 0 by Lemma 3.1, so (6.4) follows. Using (6.4) one 
obtains (6.5) immediately. Using (6.5) and Lemma 6.2, we obtain (6.6). 1 

LEMMA 6.4. Under (A.l)-(A.4) (A.9) if’ (s,, .I’,+, ) ix 0 good progrum 
from x in D, then 

J(s,, 1) -+ 0 us t+ Yl _. (6.7) 

Proof: Using Lemma 6.3 and given ;’ > 0, we can choose T* < co such 
that for t 3 T*, J(c,, ?) < (y/N4). We will show that 

J(x ,s+Mr.f)~Y for each s > T*. 16.8) 

Note that since J(c,, C:)<(y/N’), for t> T*, (-~,(a- I)-s,+,(Lz))< 
(y/N4) for a = l,..., M- I, M+ l,..., N. Also, (s,(M- 1)-x,+,(M))> 
(l/M) - (r/N4) for t > T*. Using these two pieces of information, we have 
for t > T*, 

x,+,(O)= 2 (.~,(a-1)-s,+,(a))>(l/M)-(;j/N3). (6.9 1 
u= I 

Now, for r = l,..., M- 1 and t > T*, 

.Y ,+r+,(r)=.~,+I(0)+ i (X,+,,+,(a)--.Y,+,,(a-i)) 
<I= I 

> (l/M) - (,;/N3) - r(y/N”) 

> (l/M) - (2y/N3) 3 (l/M) - (y/N’). 
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Using this information, together with (6.9), we have for r > T*, 

s ,+,+,(r)>(llM)-(p/N’) for r=O, I,..., M- 1. (6.10) 

Now pick any s > T*. Then since V-Y,, + A, = 1, using (6.10). 

~,~~,.~,+*,~u~<~-M[(l/M)-(-IV.)1=IM?N’. (6.11) 

Also, using (6.10) we have 

-I-,+ rr(U) < C( l/M) + (Y/WI for u=O, I,..., M- 1. (6.12) 

For if s ,+&a) 3 (l/M) + (1)/N) for some CI satisfying 1 6 ad M - 1, then 

v .1i I 
,,;, .\‘\ + \Au) 3 <,:,, -\‘,+ w(u) > CC l/M) + (Y/WI 

+ (M- l)[(IIM)-(1’,‘N’)] 

=I+(y,‘N)-(M-l)(;l/N’)>l, 

which is a contradiction. This establishes (6.12). Now, using (6.10) and 
(6.12) we can conclude that 

/.Y, + t,(rl) - (l/M)1 < (y/N) for rr=O, l,..., M- 1. (6.13) 

Using (6.1 1 ) and (6.13) we finally have, for M < N - 1. 

I 
J( .Y ,+ ,,r- Cl= “c Is, + ,Au-(l/M)1 + f I.vs+ ,r(u)l 

‘I = 0 <I = ,\i 

<(M;I/N)+(My/N’)<[l-(~/N’)]Jw~. 

For M = N, J(s, , ,,,, .f) < ;‘, using (6.13 1. This confirms (6.8) and proves 
(6.7). I 

THEOREM 6.1. Under (A.1 )--(A.4), (A.6), (A.91, if‘ (x,, .r,+ , ) is LIIZ 
optinwd progrum ,fiom x in D, tlwn s, comerges to .< us t terds to icfi:nit>,. 

Prooj: By Lemmas 4.1 and 4.2, an optimal program must be good. 
Hence, by Lemma 6.4, the result follows. 1 

7. CONCLUDING REMARKS 

In this section, we comment briefly on how our analysis of the forest 
management problem can be generalized in several directions. 
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First, note that we have implicitly assumed the costs of planting and bar- 
vesting to be zero. These costs may be treated in several ways. One would 
be to consider wage, N’, to be fixed in terms of timber, and to assume 
immediate replanting after a tree is cut down (for example, for soil conser- 
vation or for seizing the opportunity to utilize the land released 
immediately). Then one may simply redefine the function by replacing,J‘(u) 
by [f(a) - n’]. Our results would then still carry over. 

Second, the analysis of the linear utility function (Sect. 5) may be applied 
to the case of a competitive manager of a forest, where m is the constant 
profit per unit of timber, and the interest rate is zero. Similarly. the analysis 
of the strictly concave utility function (Sect. 6) may be applied to the case 
of a monopolistic manager of a forest where u is the profit function, and 
the interest rate is zero. Of course, the profit function may not be increas- 
ing throughout, as (A.3) demands. However, so long as the profit function 
is increasing on [0, N], our results will carry over. 

Third, we have ignored in our analysis the problem of “forest-thinning” 
and how this could affect the function ,~‘(LI). To the extent that the 
Faustmann solution starting from an empty tract of land involves a forest 
full of mature trees (of the same age M) just before they are cut down, 
while the golden-rule solution does not, the problem of forest-thinning will 
be more serious for programs following periodic Faustmann solutions than 
for those following asymptotically golden-rule solutions. Thus, one may 
conjecture that, when the aspect of “forest-thinning” is properly accounted 
for in our analysis, the Faustmann solution need not be optimal. even with 
a linear utility function. 

Finally, an important question not discussed in this paper is the 
following: Would the two types of asymptotic results (depending on the 
linearity or the strict concavity of the utility function) continue to hold if 
future utilities are discounted? Kemp and Moore [9] conjecture that this 
will indeed be the case, and carry out numerical analysis of special cases to 
support their conjecture in a continuous-time analysis of the forest- 
management problem. On the other hand, the recent literature on optimal 
intertemporal allocation when future utilities are discounted suggests that 
optimal programs may follow an asymptotic turnpike solution only when 
the discount rate, p, is “sufftciently small.” (These results are proved both 
in discrete-time and continuous-time frameworks.) Our own investigation 
of this question, in a discrete-time framework, shows that there is a basic 
difference in the analysis of the discounted case, compared with the 
undiscounted case, when the utility function is strictly concave. Discussion 
of this difference is, of course, beyond the scope of the present paper. The 
interested reader is referred to Mitra and Wan [ 121 and the references 
cited there for details. 
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